top of page

2017 Cancer's Potential Golden Bullet


TURMERIC FOR HEALTH PREVENTION AND PROMOTION: Supplements are drugs. In general, pill supplements should not be taken unless there is a laboratory proven need/deficiency. Turmeric and melatonin might be exceptions. There have been 30 years of studies looking at the health benefits of turmeric. Most of these study designs were valid well designed studies. I’ve known for some time that turmeric is a golden supplement that is valuable for health prevention and health promotion. This ancient Indian spice has potent anti-inflammatory and antibiotic properties. It is inexpensive and readily available. Turmeric isn't absorbed well unless it’s cooked with a healthy fat with a dash of black pepper (piperine) and/or taken as a highly bio-available supplement such as Theracurcumin. Study dosages ranged anywhere from 150mg per day to 8000 mg per day. Over 100 different clinical trials have been completed which clearly show there are no side effects from turmeric even at ginormous doses. We do not know what the ceiling dose is yet, or if there is one. Many prescription drugs and other supplements such as resveratrol, piperine, catechins, quercitin, and genistein can have increased effect and possibly side effects if taken with higher strength bio-available turmeric. Using it in cooking, as described above, along with 1200mg of Theracurcumin daily, in 3 divided doses, is safe as a health prevention health promotion measure if not on other supplements or medications. If you are on other medications or supplements, PLEASE LET YOUR HEALTHCARE PROVIDER KNOW BEFORE YOU ADD TURMERIC TO YOUR REGIMEN. This will prevent potential adverse effects from turmeric's synergistic effect on other drugs. Using fresh turmeric in cooking, without supplementation, is safe while on other medications. The “Verve/Nourishing Within Cook book” has an entire section featuring turmeric as a recipe ingredient.

TURMERIC FOR ADD-ON TREATMENT OF DISEASE: It is now known that turmeric can be useful as add-on treatment for many human diseases and conditions because of its potent properties. ASK YOUR PROVIDER FOR INFORMATION RELATED TO TURMERIC AND ADD-ON DOSING PER ESTABLISHED PROTOCOLS. Let me emphasize that turmeric is not an acceptable single treatment, but an add-on treatment that improves quality of life for the following health problems:

  1. Neurodegenerative diseases - Alzheimer’s, Parkinson’s, Multiple Sclerosis, Epilepsy and for various other nervous system disorders.

  2. Reduction in atherosclerotic plaques - one of several measures that could be used in the prevention of heart attacks and strokes.

  3. Lung diseases and environmental allergies - asthma, and bronchitis

  4. Colitis– prevention and treatment of flare-ups.

  5. Auto immune diseases - rheumatoid arthritis, psoriasis, and eczema respond to therapeutic dosing.

  6. Improvement of blood flow to kidneys – some improvement in renal insufficiency.

  7. Metabolic disorders - obesity and diabetes have show positive effects when used in conjunction with pharmaceutical and nutritional treatment.

  8. Depression - improvement response has also been shown in current research.

  9. Viruses and AIDS have also responded when used in conjunction with conventional treatment.

TURMERIC AND CANCER TREATMENT: Since I specialize in cancer care, I’m always on the lookout for new treatments over the horizon. The purpose of this website is not to talk about cancer treatment or cure, but cancer prevention and health promotion. I reserve cancer treatment education for my clinical practice and the oncologists I work with. However, I found something very exciting that I want to share here. New 2016-2017 published studies are showing promise regarding the use of turmeric as part of treatment protocols for the deadliest solid tumor cancers for which there is no cure; pancreatic, lung, melanoma and glioblastoma brain cancers and many others. These studies were looking at quality of life. It was shown that turmeric had profound positive effect on quality of life for cancer patients, so much so, that new research is currently being designed around developing curcuminoid drugs for treatment of these deadly cancers and other curable cancers. In the case of curable cancers, the theory is that these drugs will be inexpensive with less side effects (if any at all). Cercuminoids are currently incorporated into cancer treatment protocols to suppress systemic inflammation in patients receiving standardized treatments.

If you are a cancer patient, BEWARE OF THOSE WHO SAY THEY CAN CURE CANCER WITH SUPPLEMENTAL TURMERIC. They are not fully educated on its use nor do they have full understanding of accurate scientific information on how cancer behaves and how turmeric interacts with treatment. There are more than 100 TYPES OF CANCERS THAT ARE TREATED AS 100 SEPARATE DISEASES AND EACH TYPE OF CANCER IS TREATED DIFFERENTLY DEPENDING ON HOW ADVANCED THE CANCER IS. Cancer risk factors range from, but are not limited to, radiation to chemicals to viruses. Some cancers grow so fast that trying to treat with supplementation and/or diet could be a deadly option when conventional treatment holds the possibility of cure. Furthermore, turmeric could escalate side effects of cancer drugs. DO NOT BEGIN OR SUBSTITUTE PRUDENT PRESCRIBED CANCER TREATMENT WITH TURMERIC SUPPLEMENTATION. But do ask your oncology professional about how turmeric might be beneficial for your specific cancer and stage. In another 5 years, we should know if cercuminoids are effective as a treatment drug.

References

  1. Siegel R., Naishadham D., Jemal A. Cancer statistics, 2013. CA Cancer J. Clin. 2013;63:11–30. doi: 10.3322/caac.21166.

  2. Stathis A., Moore M.J. Advanced pancreatic carcinoma: Current treatment and future challenges. Nat. Rev. Clin. Oncol. 2010;7:163–172. doi: 10.1038/nrclinonc.2009.236.

  3. Aggarwal B.B., Sundaram C., Malani N., Ichikawa H. Curcumin: The Indian solid gold. Adv. Exp. Med. Biol. 2007;595:1–7

  4. Strimpakos A.S., Sharma R.A. Curcumin: Preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid. Redox Signal. 2008;10:511–545. doi: 1089/ars.2007.1769.

  5. Kanai M. Therapeutic applications of curcumin for patients with pancreatic cancer. World J. Gastroenterol. 2014;20:9384–9391.

  6. Perrone D., Ardito F., Giannatempo G., Dioguardi M., Troiano G., Lo Russo L., A D.E.L., Laino L., Lo Muzio L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med. 2015;10:1615–1623. doi: 10.3892/etm.2015.2749.

  7. Li L., Aggarwal B.B., Shishodia S., Abbruzzese J., Kurzrock R. Nuclear factor-kappaB and ikappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer. 2004;101:2351–2362. doi: 10.1002/cncr.20605.

  8. Bimonte S., Barbieri A., Palma G., Luciano A., Rea D., Arra C. Curcumin inhibits tumor growth and angiogenesis in an orthotopic mouse model of human pancreatic cancer. Biomed. Res. Int. 2013;2013:810423. doi: 10.1155/2013/810423.

  9. Bimonte S., Barbieri A., Palma G., Rea D., Luciano A., D’Aiuto M., Arra C., Izzo F. Dissecting the role of curcumin in tumour growth and angiogenesis in mouse model of human breast cancer. Biomed. Res. Int. 2015;2015:878134. doi: 10.1155/2015/878134.

  10. Notarbartolo M., Poma P., Perri D., Dusonchet L., Cervello M., D’Alessandro N. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in Nf-kappaB activation levels and in iap gene expression. Cancer Lett. 2005;224:53–65. doi: 10.1016/j.canlet.2004.10.051.

  11. Tomita M., Kawakami H., Uchihara J.N., Okudaira T., Masuda M., Takasu N., Matsuda T., Ohta T., Tanaka Y., Ohshiro K., et al. Curcumin (diferuloylmethane) inhibits constitutive active Nf-kappaB, leading to suppression of cell growth of human t-cell leukemia virus type I-infected T-cell lines and primary adult T-cell leukemia cells. Int. J. Cancer. 2006;118:765–772. doi: 10.1002/ijc.21389.

  12. Wang Z., Zhang Y., Banerjee S., Li Y., Sarkar F.H. Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer. 2006;106:2503–2513. doi: 10.1002/cncr.21904.

  13. Everett P.C., Meyers J.A., Makkinje A., Rabbi M., Lerner A. Preclinical assessment of curcumin as a potential therapy for b-cll. Am. J. Hematol. 2007;82:23–30. doi: 10.1002/ajh.20757.

  14. Li M., Zhang Z., Hill D.L., Wang H., Zhang R. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res. 2007;67:1988–1996. doi: 10.1158/0008-5472.CAN-06-3066.

  15. Lin Y.G., Kunnumakkara A.B., Nair A., Merritt W.M., Han L.Y., Armaiz-Pena G.N., Kamat A.A., Spannuth W.A., Gershenson D.M., Lutgendorf S.K., et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res. 2007;13:3423–3430. doi: 10.1158/1078-0432.CCR-06-3072.

  16. Bachmeier B.E., Mohrenz I.V., Mirisola V., Schleicher E., Romeo F., Hohneke C., Jochum M., Nerlich A.G., Pfeffer U. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NfkappaB. Carcinogenesis. 2008;29:779–789. doi: 10.1093/carcin/bgm248.

  17. Kunnumakkara A.B., Diagaradjane P., Guha S., Deorukhkar A., Shentu S., Aggarwal B.B., Krishnan S. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin. Cancer Res. 2008;14:2128–2136. doi: 10.1158/1078-0432.CCR-07-4722.

  18. Milacic V., Banerjee S., Landis-Piwowar K.R., Sarkar F.H., Majumdar A.P., Dou Q.P. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res. 2008;68:7283–7292. doi: 10.1158/0008-5472.CAN-07-6246.

  19. Sahu R.P., Batra S., Srivastava S.K. Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. Br. J. Cancer. 2009;100:1425–1433. doi: 10.1038/sj.bjc.6605039.

  20. Glienke W., Maute L., Wicht J., Bergmann L. Curcumin inhibits constitutive STAT3 phosphorylation in human pancreatic cancer cell lines and downregulation of survivin/BIRC5 gene expression. Cancer Investig. 2010;28:166–171. doi: 10.3109/07357900903287006.

  21. Ali S., Ahmad A., Banerjee S., Padhye S., Dominiak K., Schaffert J.M., Wang Z., Philip P.A., Sarkar F.H. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of mir-200 and mir-21 expression by curcumin or its analogue CDF. Cancer Res. 2010;70:3606–3617. doi: 10.1158/0008-5472.CAN-09-4598.

  22. Yang C.L., Liu Y.Y., Ma Y.G., Xue Y.X., Liu D.G., Ren Y., Liu X.B., Li Y., Li Z. Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through janus kinase-STAT3 signalling pathway. PLoS ONE. 2012;7:433 doi: 10.1371/journal.pone.0037960.

  23. Yu L.L., Wu J.G., Dai N., Yu H.G., Si J.M. Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the Nf-kappaB transcription factor. Oncol. Rep. 2011;26:1197–1203.

  24. Basha R., Connelly S.F., Sankpal U.T., Nagaraju G.P., Patel H., Vishwanatha J.K., Shelake S., Tabor-Simecka L., Shoji M., Simecka J.W., et al. Small molecule tolfenamic acid and dietary spice curcumin treatment enhances antiproliferative effect in pancreatic cancer cells via suppressing sp1, disrupting Nf-κB translocation to nucleus and cell cycle phase distribution. J. Nutr. Biochem. 2016;31:77–87. doi: 10.1016/j.jnutbio.2016.01.003.

  25. Cao L., Xiao X., Lei J., Duan W., Ma Q., Li W. Curcumin inhibits hypoxia-induced epithelialmesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway. Oncol. Rep. 2016;35:3728–3734.

  26. Parsons H.A., Baracos V.E., Hong D.S., Abbruzzese J., Bruera E., Kurzrock R. The effects of curcumin (diferuloylmethane) on body composition of patients with advanced pancreatic cancer. Oncotarget. 2016 doi: 10.18632/oncotarget.7773.

  27. Sahebkar A. Curcumin: A natural multitarget treatment for pancreatic cancer. Integr. Cancer Ther. 2016 doi: 10.1177/1534735415624139.

  28. Luthra P.M., Lal N. Prospective of curcumin, a pleiotropic signalling molecule from curcuma longa in the treatment of glioblastoma. Eur. J. Med. Chem. 2016;109:23–35. doi: 10.1016/j.ejmech.2015.11.049.

  29. Tsai C.F., Hsieh T.H., Lee J.N., Hsu C.Y., Wang Y.C., Kuo K.K., Wu H.L., Chiu C.C., Tsai E.M., Kuo P.L. Curcumin suppresses phthalate-induced metastasis and the proportion of cancer stem cell (CSC)-like cells via the inhibition of AhR/ERK/SK1 signaling in hepatocellular carcinoma. J. Agric. Food Chem. 2015;63:10388–10398. doi: 10.1021/acs.jafc.5b04415.

  30. Hu B., Sun D., Sun C., Sun Y.F., Sun H.X., Zhu Q.F., Yang X.R., Gao Y.B., Tang W.G., Fan J., et al. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 2015;468:525–532. doi: 10.1016/j.bbrc.2015.10.031.

  31. Diaz Osterman C.J., Gonda A., Stiff T., Sigaran U., Valenzuela M.M., Ferguson Bennit H.R., Moyron R.B., Khan S., Wall N.R. Curcumin induces pancreatic adenocarcinoma cell death via reduction of the inhibitors of apoptosis. Pancreas. 2016;45:101–109. doi: 10.1097/MPA.0000000000000411.

  32. Zhao Z., Li C., Xi H., Gao Y., Xu D. Curcumin induces apoptosis in pancreatic cancer cells through the induction of forkhead box o1 and inhibition of the PI3K/Akt pathway. Mol. Med. Rep. 2015;12:5415–5422.

  33. Sinha D., Biswas J., Sung B., Aggarwal B.B., Bishayee A. Chemopreventive and chemotherapeutic potential of curcumin in breast cancer. Curr. Drug Targets. 2012;13:1799–1819. doi: 10.2174/138945012804545632.

  34. Lao C.D., Ruffin M.T., Normolle D., Heath D.D., Murray S.I., Bailey J.M., Boggs M.E., Crowell J., Rock C.L., Brenner D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 2006;6 doi: 10.1186/1472-6882-6-10.

  35. Vareed S.K., Kakarala M., Ruffin M.T., Crowell J.A., Normolle D.P., Djuric Z., Brenner D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomark. Prev. 2008;17:1411–1417. doi: 10.1158/1055-9965.EPI-07-2693.

  36. Cheng A.L., Hsu C.H., Lin J.K., Hsu M.M., Ho Y.F., Shen T.S., Ko J.Y., Lin J.T., Lin B.R., Ming-Shiang W., et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:2895–2900.

  37. Li L., Braiteh F.S., Kurzrock R. Liposome-encapsulated curcumin: In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer. 2005;104:1322–1331. doi: 10.1002/cncr.21300.

  38. Bisht S., Feldmann G., Soni S., Ravi R., Karikar C., Maitra A., Maitra A. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy. J. Nanobiotechnol. 2007;5 doi: 10.1186/1477-3155-5-3.

  39. Antony B., Merina B., Iyer V.S., Judy N., Lennertz K., Joyal S. A pilot cross-over study to evaluate human oral bioavailability of BCM-95CG (biocurcumax), a novel bioenhanced preparation of curcumin. Indian J. Pharm. Sci. 2008;70:445–449. doi: 10.4103/0250-474X.44591.

  40. Shaikh J., Ankola D.D., Beniwal V., Singh D., Kumar M.N. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci. 2009;37:223–230. doi: 10.1016/j.ejps.2009.02.019.

  41. Anand P., Nair H.B., Sung B., Kunnumakkara A.B., Yadav V.R., Tekmal R.R., Aggarwal B.B. Design of curcumin-loaded plga nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem. Pharmacol. 2010;79:330–338. doi: 10.1016/j.bcp.2009.09.003.

  42. Kanai M., Imaizumi A., Otsuka Y., Sasaki H., Hashiguchi M., Tsujiko K., Matsumoto S., Ishiguro H., Chiba T. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother. Pharmacol. 2012;69:65–70. doi: 10.1007/s00280-011-1673-1.

  43. Kesharwani P., Banerjee S., Padhye S., Sarkar F.H., Iyer A.K. Parenterally administrable nano-micelles of 3,4-difluorobenzylidene curcumin for treating pancreatic cancer. Colloids Surf. B Biointerfaces. 2015;132:138–145. doi: 10.1016/j.colsurfb.2015.05.007.

  44. Margulis K., Srinivasan S., Ware M.J., Summers H.D., Godin B., Magdassi S. Active curcumin nanoparticles formed from a volatile microemulsion template. J. Mater. Chem. B Mater. Biol. Med. 2014;2:3745–3752. doi: 10.1039/c4tb00267a.

  45. Howells L.M., Sale S., Sriramareddy S.N., Irving G.R., Jones D.J., Ottley C.J., Pearson D.G., Mann C.D., Manson M.M., Berry D.P., et al. Curcumin ameliorates oxaliplatin-induced chemoresistance in HCT116 colorectal cancer cells in vitro and in vivo. Int. J. Cancer. 2011;129:476–486. doi: 10.1002/ijc.25670.

  46. Jutooru I., Chadalapaka G., Lei P., Safe S. Inhibition of NfkappaB and pancreatic cancer cell and tumor growth by curcumin is dependent on specificity protein down-regulation. J. Biol. Chem. 2010;285:25332–25344. doi: 10.1074/jbc.M109.095240.

  47. Youns M., Fathy G.M. Upregulation of extrinsic apoptotic pathway in curcumin-mediated antiproliferative effect on human pancreatic carcinogenesis. J. Cell. Biochem. 2013;114:2654–2665. doi: 10.1002/jcb.24612.

  48. Li Y., Revalde J.L., Reid G., Paxton J.W. Modulatory effects of curcumin on multi-drug resistance-associated protein 5 in pancreatic cancer cells. Cancer Chemother. Pharmacol. 2011;68:603–610. doi: 10.1007/s00280-010-1515-6.

  49. Kesharwani P., Xie L., Banerjee S., Mao G., Padhye S., Sarkar F.H., Iyer A.K. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to cd44 overexpressing pancreatic cancer cells. Colloids Surf. B Biointerfaces. 2015;136:413–423. doi: 10.1016/j.colsurfb.2015.09.043.

  50. Osterman C.J., Lynch J.C., Leaf P., Gonda A., Ferguson Bennit H.R., Griffiths D., Wall N.R. Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function. PLoS ONE. 2015;10:433 doi: 10.1371/journal.pone.0132845.

  51. Gundewar C., Ansari D., Tang L., Wang Y., Liang G., Rosendahl A.H., Saleem M.A., Andersson R. Antiproliferative effects of curcumin analog l49H37 in pancreatic stellate cells: A comparative study. Ann. Gastroenterol. 2015;28:391–398.

  52. Fiala M. Curcumin and omega-3 fatty acids enhance nk cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-gamma production: Benefits of omega-3 with curcumin against cancer. Molecules. 2015;20:3020–3026. doi: 10.3390/molecules20023020.

  53. Ma J., Fang B., Zeng F., Pang H., Zhang J., Shi Y., Wu X., Cheng L., Ma C., Xia J., et al. Curcumin inhibits cell growth and invasion through up-regulation of mir-7 in pancreatic cancer cells. Toxicol. Lett. 2014;231:82–91. doi: 10.1016/j.toxlet.2014.09.014.

  54. Duarte V.M., Han E., Veena M.S., Salvado A., Suh J.D., Liang L.J., Faull K.F., Srivatsan E.S., Wang M.B. Curcumin enhances the effect of cisplatin in suppression of head and neck squamous cell carcinoma via inhibition of ikkbeta protein of the NfkappaB pathway. Mol. Cancer Ther. 2010;9:2665–2675. doi: 10.1158/1535-7163.MCT-10-0064.

  55. Sun X.D., Liu X.E., Huang D.S. Curcumin reverses the epithelial-mesenchymal transition of pancreatic cancer cells by inhibiting the hedgehog signaling pathway. Oncol. Rep. 2013;29:2401–2407.

  56. Kunnumakkara A.B., Guha S., Krishnan S., Diagaradjane P., Gelovani J., Aggarwal B.B. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res. 2007;67:3853–3861. doi: 10.1158/0008-5472.CAN-06-4257.

  57. Parasramka M.A., Gupta S.V. Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells. J. Oncol. 2012;2012:709739. doi: 10.1155/2012/709739.

  58. Lin L., Hutzen B., Zuo M., Ball S., Deangelis S., Foust E., Pandit B., Ihnat M.A., Shenoy S.S., Kulp S., et al. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res. 2010;70:2445–2454. doi: 10.1158/0008-5472.CAN-09-2468.

  59. Bao B., Ali S., Banerjee S., Wang Z., Logna F., Azmi A.S., Kong D., Ahmad A., Li Y., Padhye S., et al. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor micrornas and attenuating EZH2 expression. Cancer Res. 2012;72:335–345. doi: 10.1158/0008-5472.CAN-11-2182.

  60. Sureban S.M., Qu D., Houchen C.W. Regulation of mirnas by agents targeting the tumor stem cell markers DCLK1, MSI1, LGR5, and BMI1. Curr. Pharmacol. Rep. 2015;1:217–222. doi: 10.1007/s40495-014-0006-6.

  61. Sun M., Estrov Z., Ji Y., Coombes K.R., Harris D.H., Kurzrock R. Curcumin (diferuloylmethane) alters the expression profiles of micrornas in human pancreatic cancer cells. Mol. Cancer Ther. 2008;7:464–473. doi: 10.1158/1535-7163.MCT-07-2272.

  62. Bisht S., Mizuma M., Feldmann G., Ottenhof N.A., Hong S.M., Pramanik D., Chenna V., Karikari C., Sharma R., Goggins M.G., et al. Systemic administration of polymeric nanoparticle-encapsulated curcumin (nanocurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol. Cancer Ther. 2010;9:2255–2264. doi: 10.1158/1535-7163.MCT-10-0172.

  63. Kesharwani P., Banerjee S., Padhye S., Sarkar F.H., Iyer A.K. Hyaluronic acid engineered nanomicelles loaded with 3,4-difluorobenzylidene curcumin for targeted killing of CD44+ stem-like pancreatic cancer cells. Biomacromolecules. 2015;16:3042–3053. doi: 10.1021/acs.biomac.5b00941.

  64. Halder R.C., Almasi A., Sagong B., Leung J., Jewett A., Fiala M. Curcuminoids and omega-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon gamma production. Front. Physiol. 2015;6:129. doi: 10.3389/fphys.2015.00129.

  65. Nagaraju G.P., Zhu S., Ko J.E., Ashritha N., Kandimalla R., Snyder J.P., Shoji M., El-Rayes B.F. Antiangiogenic effects of a novel synthetic curcumin analogue in pancreatic cancer. Cancer Lett. 2015;357:557–565. doi: 10.1016/j.canlet.2014.12.007.

  66. Ali S., Ahmad A., Aboukameel A., Ahmed A., Bao B., Banerjee S., Philip P.A., Sarkar F.H. Deregulation of mir-146a expression in a mouse model of pancreatic cancer affecting egfr signaling. Cancer Lett. 2014;351:134–142. doi: 10.1016/j.canlet.2014.05.013.

  67. Ranjan A.P., Mukerjee A., Helson L., Gupta R., Vishwanatha J.K. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: Inhibition of tumor growth and angiogenesis. Anticancer Res. 2013;33:3603–3609.

  68. Nagaraju G.P., Zhu S., Wen J., Farris A.B., Adsay V.N., Diaz R., Snyder J.P., Mamoru S., El-Rayes B.F. Novel synthetic curcumin analogues EF31 and UBS109 are potent DNA hypomethylating agents in pancreatic cancer. Cancer Lett. 2013;341:195–203. doi: 10.1016/j.canlet.2013.08.002.

  69. Yallapu M.M., Ebeling M.C., Khan S., Sundram V., Chauhan N., Gupta B.K., Puumala S.E., Jaggi M., Chauhan S.C. Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol. Cancer Ther. 2013;12:1471–1480. doi: 10.1158/1535-7163.MCT-12-1227.

  70. Mach C.M., Mathew L., Mosley S.A., Kurzrock R., Smith J.A. Determination of minimum effective dose and optimal dosing schedule for liposomal curcumin in a xenograft human pancreatic cancer model. Anticancer Res. 2009;29:1895–1899.

  71. Garcea G., Berry D.P., Jones D.J., Singh R., Dennison A.R., Farmer P.B., Sharma R.A., Steward W.P., Gescher A.J. Consumption of the putative chemopreventive agent curcumin by cancer patients: Assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol. Biomark. Prev. 2005;14:120–125.

  72. Dhillon N., Aggarwal B.B., Newman R.A., Wolff R.A., Kunnumakkara A.B., Abbruzzese J.L., Ng C.S., Badmaev V., Kurzrock R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res. 2008;14:4491–4499. doi: 10.1158/1078-0432.CCR-08-0024.

  73. Kanai M., Yoshimura K., Asada M., Imaizumi A., Suzuki C., Matsumoto S., Nishimura T., Mori Y., Masui T., Kawaguchi Y., et al. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother. Pharmacol. 2011;68:157–164. doi: 10.1007/s00280-010-1470-2. Epelbaum R., Schaffer M., Vizel B., Badmaev V., Bar-Sela G. Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr. Cancer. 2010;62:1137–1141. doi: 10.1080/01635581.2010.513802.

  74. Kanai M., Otsuka Y., Otsuka K., Sato M., Nishimura T., Mori Y., Kawaguchi M., Hatano E., Kodama Y., Matsumoto S., et al. A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (theracurmin) in cancer patients. Cancer Chemother. Pharmacol. 2013;71:1521–1530. doi: 10.1007/s00280-013-2151-8.

Save


Featured Posts
Archive
Search By Tags
No tags yet.
Follow Us
  • Facebook Social Icon
  • Twitter Social Icon
  • Google+ Social Icon
bottom of page